Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736210

RESUMO

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Assuntos
Escherichia coli , Mutagênicos , Recombinases Rec A , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Filogenia , Recombinases Rec A/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(19): e2119964119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503913

RESUMO

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.


Assuntos
Shewanella , Imagem Individual de Molécula , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Oxirredução , Shewanella/metabolismo
3.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35178558

RESUMO

Emerin is an integral nuclear envelope protein that participates in the maintenance of nuclear shape. When mutated or absent, emerin causes X-linked Emery-Dreifuss muscular dystrophy (EDMD). To understand how emerin takes part in molecular --scaffolding at the nuclear envelope and helps protect the nucleus against mechanical stress, we established its nanoscale organization using single-molecule tracking and super-resolution microscopy. We show that emerin monomers form localized oligomeric nanoclusters stabilized by both lamin A/C and the SUN1-containing linker of nucleoskeleton and cytoskeleton (LINC) complex. Interactions of emerin with nuclear actin and BAF (also known as BANF1) additionally modulate its membrane mobility and its ability to oligomerize. In nuclei subjected to mechanical challenges, the mechanotransduction functions of emerin are coupled to changes in its oligomeric state, and the incremental self-assembly of emerin determines nuclear shape adaptation against mechanical forces. We also show that the abnormal nuclear envelope deformations induced by EDMD emerin mutants stem from improper formation of lamin A/C and LINC complex-stabilized emerin oligomers. These findings place emerin at the center of the molecular processes that regulate nuclear shape remodeling in response to mechanical challenges.


Assuntos
Distrofia Muscular de Emery-Dreifuss , Membrana Nuclear , Humanos , Mecanotransdução Celular , Proteínas de Membrana , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Phys Rev E ; 104(2): L022401, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525615

RESUMO

Caveolae are cell membrane invaginations of defined lipid and protein composition that flatten with increasing membrane tension. Super-resolution light microscopy and electron microscopy have revealed that caveolae can take a variety of cuplike shapes. We show here that, for the range in membrane tension relevant for cell membranes, the competition between membrane tension and membrane bending yields caveolae with cuplike shapes similar to those observed experimentally. We find that the caveola shape and its sensitivity to changes in membrane tension can depend strongly on the caveola spontaneous curvature and on the size of caveola domains. Our results suggest that heterogeneity in caveola shape produces a staggered response of caveolae to mechanical perturbations of the cell membrane, which may facilitate regulation of membrane tension over the wide range of scales thought to be relevant for cell membranes.

5.
Front Cell Dev Biol ; 8: 504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656213

RESUMO

Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.

6.
Sci Rep ; 9(1): 18909, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806875

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Micromachines (Basel) ; 10(12)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771260

RESUMO

Micropatterning techniques have been widely used in biology, particularly in studies involving cell adhesion and proliferation on different substrates. Cell micropatterning approaches are also increasingly employed as in vitro tools to investigate intracellular mechanotransduction processes. In this report, we examined how modulating cellular shapes on two-dimensional rectangular fibronectin micropatterns of different widths influences nuclear mechanotransduction mediated by emerin, a nuclear envelope protein implicated in Emery-Dreifuss muscular dystrophy (EDMD). Fibronectin microcontact printing was tested onto glass coverslips functionalized with three different silane reagents (hexamethyldisilazane (HMDS), (3-Aminopropyl)triethoxysilane (APTES) and (3-Glycidyloxypropyl)trimethoxysilane (GPTMS)) using a vapor-phase deposition method. We observed that HMDS provides the most reliable printing surface for cell micropatterning, notably because it forms a hydrophobic organosilane monolayer that favors the retainment of surface antifouling agents on the coverslips. We showed that, under specific mechanical cues, emerin-null human skin fibroblasts display a significantly more deformed nucleus than skin fibroblasts expressing wild type emerin, indicating that emerin plays a crucial role in nuclear adaptability to mechanical stresses. We further showed that proper nuclear responses to forces involve a significant relocation of emerin from the inner nuclear envelope towards the outer nuclear envelope and the endoplasmic reticulum membrane network. Cell micropatterning by fibronectin microcontact printing directly on HMDS-treated glass represents a simple approach to apply steady-state biophysical cues to cells and study their specific mechanobiology responses in vitro.

8.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416894

RESUMO

GRP78 conducts protein folding and quality control in the ER and shows elevated expression and cell surface translocation in advanced tumors. However, the underlying mechanisms enabling GRP78 to exert novel signaling functions at cell surface are just emerging. CD44 is a transmembrane protein and an important regulator of cancer metastasis, and isoform switch of CD44 through incorporating additional variable exons to the extracellular juxtamembrane region is frequently observed during cancer progression. Using super-resolution dual-color single-particle tracking, we report that GRP78 interacts with CD44v in plasma membrane nanodomains of breast cancer cells. We further show that targeting cell surface GRP78 by the antibodies can effectively reduce cell surface expression of CD44v and cell spreading of tamoxifen-resistant breast cancer cells. Our results uncover new functions of GRP78 as an interacting partner of CD44v and as a regulator of CD44v membrane homeostasis and cell spreading. This study also provides new insights into anti-CD44 therapy in tamoxifen-resistant breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico/metabolismo , Receptores de Hialuronatos/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Receptores de Hialuronatos/química , Células MCF-7 , Células Neoplásicas Circulantes/metabolismo , Transdução de Sinais , Tamoxifeno
9.
PLoS Genet ; 15(2): e1007956, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716079

RESUMO

Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Bacteriano/biossíntese , DNA Polimerase Dirigida por DNA/genética , Ativação Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Genes Bacterianos , Cinética , Mutação , Conformação Proteica , Resposta SOS em Genética
10.
Sci Rep ; 8(1): 5344, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593344

RESUMO

Many biotechniques use complementary split-fluorescent protein (sFPs) fragments to visualize protein-protein interactions, image cells by ensemble or single molecule fluorescence microscopy, or assemble nanomaterials and protein superstructures. Yet, the reassembly mechanisms of sFPs, including fragment binding rates, folding, chromophore maturation and overall photophysics remain poorly characterized. Here, we evolved asymmetric and self-complementing green, yellow and cyan sFPs together with their full-length equivalents (flFPs) and described their biochemical and photophysical properties in vitro and in cells. While re-assembled sFPs have spectral properties similar to flFPs, they display slightly reduced quantum yields and fluorescence lifetimes due to a less sturdy ß-barrel structure. The complementation of recombinant sFPs expressed in vitro follows a conformational selection mechanism whereby the larger sFP fragments exist in a monomer-dimer equilibrium and only monomers are competent for fluorescence complementation. This bimolecular fragment interaction involves a slow and irreversible binding step, followed by chromophore maturation at a rate similar to that of flFPs. When expressed as fusion tags in cells, sFPs behave as monomers directly activated with synthetic complementary fragments. This study resulted in the development of sFP color variants having improved maturation kinetics, brightness, and photophysics for fluorescence microscopy imaging of cellular processes, including single molecule detection.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Proteínas Mutantes , Multimerização Proteica , Fluorescência , Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes , Espectrometria de Fluorescência
11.
Nat Commun ; 9(1): 607, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426856

RESUMO

The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.


Assuntos
Proteínas de Fluorescência Verde/química , Nanopartículas Metálicas/química , Sondas Moleculares , Técnicas Fotoacústicas/métodos , Análise Espectral Raman/métodos , Acústica , Biomarcadores Tumorais/análise , Catálise , Coloides/química , Difusão , Fluorescência , Ouro/química , Humanos , Microscopia/métodos , Microscopia Eletrônica de Transmissão , Prata/química , Células Tumorais Cultivadas
12.
ACS Appl Mater Interfaces ; 9(33): 27575-27586, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28766344

RESUMO

Patterning cells on microcontact-printed substrates is a powerful approach to control cell morphology and introduce specific mechanical cues on a cell's molecular organization. Although global changes in cellular architectures caused by micropatterns can easily be probed with diffraction-limited optical microscopy, studying molecular reorganizations at the nanoscale demands micropatterned substrates that accommodate the optical requirements of single molecule microscopy techniques. Here, we developed a simple micropatterning strategy that provides control of cellular architectures and is optimized for nanometer accuracy single molecule tracking and three-dimensional super-resolution imaging of plasma and nuclear membrane proteins in cells. This approach, based on fibronectin microcontact printing on hydrophobic organosilane monolayers, allows evanescent wave and light-sheet microscopy of cells whilst fulfilling the stringent optical demands of point reconstruction optical microscopy. By imposing steady-state mechanical cues on cells grown in these micropatterns, we reveal nanoscale remodeling in the dynamics and the structural organizations of the nuclear envelope mechanotransducing protein emerin and of the plasma membrane mechanosensing protein caveolin-1 using single particle tracking photoactivated localization microscopy and direct stochastic optical reconstruction microscopy imaging. In addition to allowing quantitative biophysical studies of mechanoresponsive membrane proteins, this approach provides an easy means to probe mechanical regulations in cellular membranes with high optical resolution and nanometer precision.


Assuntos
Proteínas de Membrana/análise , Membrana Celular , Imageamento Tridimensional , Microscopia , Nanotecnologia
13.
Small ; 12(42): 5891-5901, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27608276

RESUMO

The assembly of plasmonic metal nanoparticles into hot spot surface-enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self-complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split-green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near-field dipolar couplings between AuNPs and provides SERS enhancement factors above 108 . Among the different nanoclusters studied, AuNP/GFP chains allow near-infrared SERS detection of the GFP chromophore imidazolinone/exocyclic CC vibrational mode with theoretical enhancement factors of 108 -109 . For larger AuNP/GFP assemblies, the presence of non-GFP seeded nanogaps between tightly packed nanoparticles reduces near-field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.

14.
J Biol Chem ; 290(13): 8049-64, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25673690

RESUMO

Glucose-regulated protein (GRP78)/BiP, a major chaperone in the endoplasmic reticulum, is recently discovered to be preferably expressed on the surface of stressed cancer cells, where it regulates critical oncogenic signaling pathways and is emerging as a target for anti-cancer therapy while sparing normal organs. However, because GRP78 does not contain classical transmembrane domains, its mechanism of transport and its anchoring at the cell surface are poorly understood. Using a combination of biochemical, mutational, FACS, and single molecule super-resolution imaging approaches, we discovered that GRP78 majorly exists as a peripheral protein on plasma membrane via interaction with other cell surface proteins including glycosylphosphatidylinositol-anchored proteins. Moreover, cell surface GRP78 expression requires its substrate binding activity but is independent of ATP binding or a membrane insertion motif conserved with HSP70. Unexpectedly, different cancer cell lines rely on different mechanisms for GRP78 cell surface translocation, implying that the process is cell context-dependent.


Assuntos
Membrana Celular/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Caveolina 1/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Células MCF-7 , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
15.
Nat Commun ; 5: 4974, 2014 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-25232639

RESUMO

Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Distrofina/genética , Mutação , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Difusão , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/metabolismo , Sarcolema/metabolismo
16.
Bioconjug Chem ; 22(6): 1006-11, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21553893

RESUMO

We present a robust scheme for preparation of semiconductor quantum dots (QDs) and cognate partners in a conjugation ready format. Our approach is based on bis-aryl hydrazone bond formation mediated by aromatic aldehyde and hydrazinonicotinate acetone hydrazone (HyNic) activated peptide coated quantum dots. We demonstrate controlled preparation of antibody--QD bioconjugates for specific targeting of endogenous epidermal growth factor receptors in breast cancer cells and for single QD tracking of transmembrane proteins via an extracellular epitope. The same approach was also used for optical mapping of RNA polymerases bound to combed genomic DNA in vitro.


Assuntos
Aldeídos/química , Materiais Revestidos Biocompatíveis/química , Hidrazinas/química , Imagem Molecular/métodos , Peptídeos/química , Pontos Quânticos , Animais , Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/síntese química , Cricetinae , Cricetulus , Receptores ErbB/imunologia , Feminino , Células HeLa , Humanos , Teste de Materiais , Estrutura Molecular , Peptídeos/síntese química , Semicondutores
17.
Proc Natl Acad Sci U S A ; 108(24): E201-10, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21606345

RESUMO

Single-molecule (SM) microscopy allows outstanding insight into biomolecular mechanisms in cells. However, selective detection of single biomolecules in their native environment remains particularly challenging. Here, we introduce an easy methodology that combines specific targeting and nanometer accuracy imaging of individual biomolecules in living cells. In this method, named complementation-activated light microscopy (CALM), proteins are fused to dark split-fluorescent proteins (split-FPs), which are activated into bright FPs by complementation with synthetic peptides. Using CALM, the diffusion dynamics of a controlled subset of extracellular and intracellular proteins are imaged with nanometer precision, and SM tracking can additionally be performed with fluorophores and quantum dots. In cells, site-specific labeling of these probes is verified by coincidence SM detection with the complemented split-FP fusion proteins or intramolecular single-pair Förster resonance energy transfer. CALM is simple and combines advantages from genetically encoded and synthetic fluorescent probes to allow high-accuracy imaging of single biomolecules in living cells, independently of their expression level and at very high probe concentrations.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Sequência de Aminoácidos , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Células COS , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Nanotecnologia/métodos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética
18.
Nano Lett ; 10(6): 2147-54, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20433164

RESUMO

Fluorescent probes for biological imaging of single molecules (SM) have many stringent design requirements. In the case of quantum dot (QD) probes, it remains a challenge to control their functional properties with high precision. Here, we describe the simple preparation of QDs with reduced size and monovalency. Our approach combines a peptide surface coating, stable covalent conjugation of targeting units and purification by gel electrophoresis. We precisely characterize these probes by ensemble and SM techniques and apply them to tracking individual proteins in living cells.


Assuntos
Peptídeos/química , Pontos Quânticos , Corantes Fluorescentes
20.
Nat Methods ; 7(4): 275-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20354518

RESUMO

Monitoring the behavior of single molecules in living cells is a powerful approach to investigate the details of cellular processes. Owing to their optical, chemical and biofunctional properties, semiconductor quantum dot (QD) probes promise to be tools of choice in this endeavor. Here we review recent advances that allow ever more controlled experiments at the single-nanoparticle level in live cells. Several examples, related to membrane dynamics, cell signaling or intracellular transport, illustrate how single QD tracking can be readily used to decipher complex biological processes and address key concepts that underlie cellular organization and dynamics.


Assuntos
Técnicas Citológicas/métodos , Pontos Quânticos , Fenômenos Fisiológicos Celulares , Técnicas Citológicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...